Regularized Logistic Models for Probabilistic Forecasting and Diagnostics

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Readmission Classification Using Stacked Regularized Logistic Regression Models

BACKGROUND Regulations and privacy concerns often hinder exchange of healthcare data between hospitals or other healthcare providers. Sharing predictive models built on original data and averaging their results offers an alternative to more efficient prediction of outcomes on new cases. Although one can choose from many techniques to combine outputs from different predictive models, it is diffi...

متن کامل

Distributed Newton Method for Regularized Logistic Regression

Regularized logistic regression is a very successful classification method, but for large-scale data, its distributed training has not been investigated much. In this work, we propose a distributed Newton method for training logistic regression. Many interesting techniques are discussed for reducing the communication cost. Experiments show that the proposed method is faster than state of the ar...

متن کامل

Regularized Logistic Regression Fusion for Speaker Verification

Fusion of the base classifiers is seen as the way to achieve stateof-the art performance in the speaker verfication systems. Standard approach is to pose the fusion problem as the linear binary classification task. Most successful loss function in speaker verification fusion has been the weighted logistic regression popularized by the FoCal toolkit. However, it is known that optimizing logistic...

متن کامل

Linearized Bregman for l1-regularized Logistic Regression

Sparse logistic regression is an important linear classifier in statistical learning, providing an attractive route for feature selection. A popular approach is based on minimizing an l1-regularization term with a regularization parameter λ that affects the solution sparsity. To determine an appropriate value for the regularization parameter, one can apply the grid search method or the Bayesian...

متن کامل

Distributed Newton Methods for Regularized Logistic Regression

Regularized logistic regression is a very useful classification method, but for large-scale data, its distributed training has not been investigated much. In this work, we propose a distributed Newton method for training logistic regression. Many interesting techniques are discussed for reducing the communication cost and speeding up the computation. Experiments show that the proposed method is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monthly Weather Review

سال: 2010

ISSN: 1520-0493,0027-0644

DOI: 10.1175/2009mwr3126.1